
ICT365

Software Development Frameworks

Dr Afaq Shah

Common Language Infrastructure

Application Packaging and Deployment

Topic Aims

Understand .NET assemblies

how are they generated?

what do they contain: manifest, metadata, IL, etc;

the two types: executable programs (.EXE) and

libraries (.DLL);

representation of types and type references in
assemblies.

Understand Common Type System (CTS)

why common types?

value types and reference types;

primitive types, their names in BCL, IL and C#;

mapping of high-level language types to CTS.

Topic Aims (cnt’d)

Understand the role of Common Intermediate
Language (CIL, or IL).

Understand how high-level language types are
mapped to IL types.

Understand how CLR loads and executes .NET
assemblies.

Understand and be able to use C# compiler csc
and VB compiler vbc to compile source code into

.EXE and .DLL assemblies.

Be able to use ildasm to generate textual

representation of assembly code and be able to

map the high-level language types to the IL

types in such textual representation.

Common Language
Infrastructure

CLR is Microsoft’s implementation of Common
Language Infrastructure (CLI), which defines
Common Type System (CTS), metadata
structure and syntax for representing CTS,
and Common Intermediate Language (CIL).

CLI is an approved international standard
proposed by Microsoft. The latest version is
available at

http://www.ecma-

international.org/publications/standards/Ecma-335.htm

http://www.ecma-international.org/publications/standards/Ecma-335.htm

Framework Class Library (FCL)

Kernel Profile (defined in CLI):

- Runtime Infrastructure Library, Base Class
Library (BCL)

Compact Profile (defined in CLI):

- Kernel Profile plus Network Library, XML
Library, Reflection Library

Non-CLI libraries:

- ADO.NET, ASP.NET, Windows Forms

High-Level Languages for .NET

C# is the lingua franca of the .NET.

Other high-level languages are also available:

- Visual Basic .NET,

- C++/CLI,

- J#, Perl, ...

You can use the same FCL from any of the .NET
languages in nearly identical way.

Traditional Programming Model

C++ source
code with calls
to C++ library

Assembly code
for one CPU
architecture

Object code for
one CPU

architecture

C++ Library for
the same CPU
architecture

Executable
program for

that CPU
architecture

VB source
code with calls
to VB library

Assembly code
for another

CPU
architecture

Object code for
another CPU
architecture

VB Library for
another CPU
architecture

Executable
program for

that CPU
architecture

One
CPU

Another
CPU

.NET Programming Model

C# source
code with calls

to FCL

.NET
Assembly

code
FCL

VB.NET source
code with calls

to FCL

.NET
Assembly

code

CLR

CLR

Execution of any .NET assembly on different computer systems with possibly

different operating systems and/or CPU architectures

FCL

.NET Framework implemented on one
computer system, eg Windows 10

.NET Framework implemented on a
different computer system such as

Linux

Platform Independence

A .NET program is compiled into, and deployed as,
an architecture independent assembly code. The
format of the assembly is specified in CLI
standard.

The assembly code would run on any system
(Microsoft Windows, Linux, Mac OS X etc), as long
as that system has an implementation of CLI and
FCL.

Therefore, at least in theory, .NET programs are
platform independent.

In reality, complete implementation of .NET
Framework is only available in Microsoft operating
systems.

There are attempts to implement CLI and FCL on
other platforms (eg, Linux and Mac OS X) such as
mono project (www.mono-project.org). However
the implementation is not yet complete.

Language Interoperability

Under .NET, you can develop an application
with one .NET language such as C#, or with
several .NET languages.

You can create a new library of functionality
with one .NET language (such as C#) and
clients of the library can use it from any
.NET language (such as VB.NET).

Once you know how to use a library from one
language such as C#, you will be able to
use the same library from any other .NET
language.

Why Learn .NET?

Microsoft spends huge sums of money to move
developers to the .NET platform.

It is expected that many new software projects will
target the .NET platform, especially those that
are internet and web based.

It is much quicker to develop applications on .NET
platform due to its powerful class libraries.

Surveys show that there is a demand for .NET
skills in the job market.

Simplest .NET program using C#....

// Hello.cs

//

// this is our first C# program

public class Hello

{

public static void Main(string[] args)

{

System.Console.Out.WriteLine("Hello, world!");

}

}

Compile and Run

Use a text editor such as Notepad++ to create
the source code.

Save the source code into a file with .cs
extension name, such as “Hello.cs”.

Compile it with C# compiler csc from Command
Prompt:

csc Hello.cs

Execute the program Hello.exe by typing Hello in
Command Prompt or double clicking it.

Note that csc is usually under directory:
c:\WINDOWS\microsoft.NET\Framework64\v4.0

.30319\

http://microsoft.NET/

"C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\MSBuild\15.0\Bin\Roslyn\csc.exe" "c:\cs\Hello.cs"
/out:"c:\cs\Hello.exe"

Example 1

A managed module
is a standard 32-
bit Microsoft
Windows portable
executable (PE32)
file or a standard
64-bit Windows
portable
executable
(PE32+) file that
requires the CLR to
execute.

10

.NET Assembly
A source code written in a high-level .NET language such as C#

or VB.NET, is compiled into a .NET assembly.

The assembly contains metadata representing the types that

were defined and referenced in the source code as well as

Common Intermediate Language (CIL, or IL) instructions that

implement the methods of the types.

The assembly is saved into a binary file, whose file format is

known as Portable Execution/Common Object File Format, or

PE/COFF, or simply PE format. This is the common format for

binary code on Windows.

A .NET assembly is a unit of deployment, execution and re-use.

Manifests and Assemblies

Combining managed modules
into assemblies.

19

.EXE and .DLL Assemblies

There are two types of assemblies: the
executable programs (.EXE) and libraries
(.DLL).

.EXE assemblies differ from .DLL assemblies in
that only .EXE assemblies contain a small
boot-strap code to call CLR and have one and
only one method with an IL directive
“.entrypoint”.

One can run a .EXE assembly but not .DLL
assembly.

An assembly may use the types defined in
other .DLL and .EXE assemblies.

Contents of Assembly

An assembly consists of

a manifest: name, version etc that identifies the
assembly, list of files in the assembly, list of
external assemblies;

metadata: table of type definitions and table of
type references;

IL code: methods are compiled into IL. At the
runtime, the IL code is compiled into native
machine code for execution;

other types of files such as images etc.

Explore the Assembly

Compile the source code into an assembly:

csc HelloCS.cs

The assembly is named HelloCS.exe. This is the
default output name.

Explore the assembly using IL disassembler named
ildasm.exe by typing the command:

ildasm Hello.exe

Note: the above screenshot was generated with Visual Studio 2017 If you use other version of
Visual Studio, the display diagram and its content may differ slightly.

this is external assembly
C:\WINDOWS\Microsoft.NET\Framework
\v2.0.50727\mscorlib.dll

Our assembly is stored in file:
HelloCS.exe

This is our assembly name

This following .method
directive describes
another method: Main.
This method has a
.entrypoint directive, so
the execution of the
program starts from
here.

metadata .class directive for
Hello class. This class is
inherited from System.Object
class from mscorlib assembly

metadata .method
directive for the default
constructor method in
Hello class.
.ctor() indicates that this
method is a constructor.

These are IL code
implementing the
two methods

Note

You will notice minor differences between the
examples using Visual C# 2013, 2015, 2017.

"C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\MSBuild\15.0\Bin\Roslyn\csc.exe"
"c:\cs\Hello.cs" /out:"c:\cs\Hello.exe"

"C:\Program Files (x86)\Microsoft
SDKs\Windows\v7.0A\Bin\ildasm.exe" "c:\cs\Hello.exe"

Example 2

A Visual Basic .NET Source code: HelloVB.vb

h

Option Strict On
Option Explicit On

Module Hello

Sub Main()

Note t
metho
Main m
the C

e same
d from the
ethod in

code

System.Console.WriteLine("hello, world!")

End Sub

End Module

Command Line Options

The compilers csc and vbc have many command
line options. Use csc /help and vbc /help to find
out those options.

For example, you can create a library assembly
with option /target:library.

The disassembler ildasm also has many options.
For example /out allows you to create textual
file, rather than using GUI.

Example 3

A C# code for a library
class MyClass.cs.

This source code can be
compiled into a library
assembly.

The following command
compiles the source code
into a library assembly
named MyClassLib.dll:

// MyClass.cs
//

public class MyClass
{

public static string Answer()
{

return "My name is…";
}

}

csc /target:library /out:MyClassLib.dll MyClass.cs

Example 4

A C# Source code: Question.cs

// Question.cs
//
// calling a method in MyClass

public class Hello
{

public static void Main()
{

System.Console.WriteLine("Hello, what's your name?");
string msg = MyClass.Answer();
System.Console.WriteLine("The answer is {0}.", msg);

}

}

Note that we are calling method
Answer which is defined in class
MyClass inside a separate
library assembly named
MyClassLib.dll

32

3
4

Use /Reference Option

Since Question.cs uses the class MyClass from library
assembly MyClassLib.dll, it is necessary to specify
the location of that library assembly in order to
compile Question.cs successfully:

csc /reference:MyClassLib.dll Question.cs

As a general rule, you should specify all external
assemblies when compiling your source code except
mscorlib.dll which is included automatically by the
compiler.

Compiling Multiple Files into One
Assembly

We can also compile several source code files into
one assembly.

For instance, we can compile both Question.cs
and MyClass.cs into one assembly
Question.exe:

csc Question.cs MyClass.cs

CLR versus CLI.

CLR is actually an
implementation by
Microsoft of the CLI
(Common Language
Infrastructure) .

CLI is an open
specification.

CLR is really a
platform specific
implementation.

from wikipedia.org

http://upload.wikimedia.org/wikipedia/commons/6/6a/Overview_of_the_Common_Language_Infrastructure.png

The CLR Architecture

Class Loader

MSIL to Native

Compilers (JIT)

Code

Manager

Garbage

Collector (GC)

Security Engine Debug Engine

Type Checker Exception Manager

Thread Support COM Marshaler

Base Class Library Support

From MSDN

Common Language Infrastructure
(CLI)

• CLI allows for cross-language development.

• Four components:

Common Type System (CTS)

Meta-data in a language agnostic fashion.

Common Language Specification – behaviors that
all languages need to follow.

A Virtual Execution System (VES).

Common Type System (CTS)

• A specification for how types are defined
and how they behave.

no syntax specified

• A type can contain zero or more
members:

Field

Method

Property

Event

• We will go over these more throughout
the quarter.

Common Type System (CTS)

• CTS also specifies the rules for visibility
and access to members of a type:

Private

Family

Family and Assembly

Assembly

Family or Assembly

Public

Common Type System (CTS)

From MSDN

The CLR/CTS supports a lot
more features than the
subset defined by the CLS,
so if you don’t care about
interlanguage operability,
you can develop very rich
types limited only by the
language’s feature set.
Specifically, the CLS defines
rules that externally visible
types and methods must
adhere to if they are to be
accessible from any CLS-
compliant programming
language. Note that the CLS
rules don’t apply to code
that is accessible only within

the defining assembly.
49

Languages offer a subset of the CLR/CTS and a
superset of the CLS (but not necessarily the
same superset).

Common Type System

One of the primary aims of .NET is language
interoperability.

A major obstacle in language interoperability is the
existence of many similar, but incompatible, types in
different high-level programming languages.

To achieve language interoperability, the underlying
CLR must support a common set of types into which
the types from all high-level languages can be
mapped.

CLI specifies just such a common set of types known as
Common Type System or CTS.

Common Type System

Another important reason that calls for CTS is
the need to creating a common set of
libraries that can be used from, and created
by, any .NET language.

Without a common type system it would be
impossible to create such a set of libraries.

The best way to organise such kind of libraries
is the object oriented system, due to its
excellent support for encapsulation,
inheritance, and polymorphism.

Therefore CTS must be an object oriented
system.

Taxonomy of CTS

CTS consists of value
types and reference
types.

Value types are
referenced directly
in the program
stack.

Reference types are
stored in program
heap and are
referenced via a
pointer.

The above diagram is copied from Unit Reader: Intro to .NET and C#

Built-in Types

BCL Type C# VB C++ IL

Boolean bool Boolean bool bool

Byte byte Byte
unsigned
char

unsigned
int8

Char char Char wchar_t char

DateTime n/a Date n/a n/a

Decimal decimal Decimal n/a n/a

Double double Double double float64

Int16 short Short short int16

Int32 int Integer int int32

Built-in Types

BCL Type C# VB C++ IL

Int64 long Long int64 int64

IntPtr n/a n/a n/a native int

Object object Object n/a object

SByte sbyte n/a signed char int8

Single float Single float float32

String string String n/a string

UInt16 ushort n/a
unsigned
short

unsigned
int16

UInt32 uint n/a unsigned int
unsigned
int32

Built-in Types

BCL Type C# VB C++ IL

UInt64 ulong n/a
unsigned
int64

unsigned
int64

UIntPtr n/a n/a n/a
native
unsigned int

Note:
1) all primitive types lives in System namespace in
mscorlib.dll assembly
2) all types listed in the above table except
Object and String are value types

Example 5

The following example defines many variables of
different primitive types in C#

// TypesExample.cs
//
// compare how types in C# are matched
// to IL

using System;

class Example
{

static int intMember;
long longMember;
uint unitMember;

float floatMember;
double doubleMember;
char charMember;
bool boolMember;
short shortMember;

decimal decimalMember;
sbyte sbyteMember;
string stringMember;

struct Point
{

int x;
int y;

}

static void Main(string[] args)
{

int intLocal;
long longLocal;
uint uintLocal;
float floatLocal;
double doubleLocal;
char charLocal;

Console.WriteLine("Beginning of Example");
intMember = 32;
intLocal = -10;
longLocal = 20;
uintLocal = 100;
floatLocal = 15.5F;
doubleLocal = 31.4;
charLocal = 'A';
Console.WriteLine("intLocal = {0}", intLocal);
Console.WriteLine("intMember = {0}", intMember);
Console.WriteLine("The end of Example");

}
}

Common Intermediate Language

Common Intermediate Language (CIL or IL) is specified
in CLI and is implemented in CLR.

It is similar to many assembly languages but it is not
targeting any specific processor. This makes .NET
programs processor-independent.

The IL operates as a stack machine in that most
operands are pushed into the stack, and instructions
make use of these operands from stack rather than
from registers. The later is how most CPU
architectures operate with.

The stack machine makes IL more general purpose as
one does not need to worry about how many registers
should be available in the underlying hardware.

The code based on stack machine can be efficiently
compiled to register-based CPU.

Just-In-Time Compilation

The IL code cannot be executed directly on
any processor. It is compiled into native CPU
instructions at run-time when the method is
called.

Such compilation is known as Just-In-Time
compilation. The compiler is commonly
referred to as JIT. JIT is a component of
CLR.

A method is only compiled once in a process
when it is called the first time.

Subsequent calls to the same method will
directly call the compiled native code, rather
than the IL code.

CLR and JIT compiling.

C#, like Java, is
executed indirectly
through an abstract
computer architecture
called the CLR.

CLR => Common
Language Runtime.

Abstract, but well
defined.

C# programs are
compiled to an IL.

Also called MSIL, CIL
(Common Intermediate
Language) or
bytecode.

http://msdn2.microsoft.com/en-us/library/z1zx9t92(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/z1zx9t92(VS.80).aspx

When does CLR start?

The .EXE assembly contains a tiny boot-strap code.

When the assembly is loaded, that boot-strap code is
executed. This code loads CLR and pass the Main
method (or the method with an .entrypoint
directive) to it.

From there CLR would take control of the execution
of the assembly.

Therefore CLR is transparent to the user.

Application Packaging and
Deployment

Application Deployment

Need to consider the following issues:

how the application is packaged

how the packaged application is distributed:

on a portable media such as a CD, or a DVD, or a USB
drive

downloadable from network such as website or
network share

retrievable from network selectively by the installation
program

how the application is run on the local machine:

by installing on the local machine

by running directly off the network such as a website

how the application is updated

ClickOnce Technology

.NET Framework 2 introduced ClickOnce deployment
technology

Visual Studio can package an application for distribution

A packaged application can be distributed using a

portable media such as DVD, a network share, or a
website

An application can be installed on a local machine under
the user’s profile, so that it can be run by the user off-
line

An application can also be launched from a website,
similar to Java Webstart

An application can automatically check for the new
version on the website and update itself

Deployment Using Portable Media

This example demonstrates how to deploy an application
using a CD or similar portable media.

After the application is packaged (i.e., published) in a disk
directory, you can copy the directory files to a CD or a
USB drive for distribution.

To install this application, run “setup.exe” program
included in the package.

The application will be installed on the logon user’s profile
on the local machine in an obfuscated location. A
shortcut will be added to the start menu. An entry will be
added to the Add/Remove Program in Windows Control.

The application can be removed using Add/Remove
Program.

Create Deployment Package

From Visual Studio’s Solution Explorer window, right-click
the project, then select “Publish”

“Publish Wizard” dialog pops up. Select the directory to
temporarily store the application package. Then click
Next.

Click “From CD-ROM or DVD-ROM” radio button, then click
Next

Click “The application will not check for updates”, then click
Next

The dialog shows “Ready to Publish!”. Click Finish.

Now the application is packaged and is ready for distribution.

Copy the files in the temporary directory to a CD or a USB
drive for distribution.

Use Property Dialog

An application can also be packaged using the properties
page (not Properties window) from the Solution Explorer
window:

Right-click the project from Solution Explorer window.
Select Properties.

The Properties page pops up. Select “Publish” menu on
the left.

Enter the necessary information.

Click “Option” to enter the name of your application such
as “My listbox” and company name such ICT365. Your
shortcut in the Start menu will be “ICT365=>My
listbox”.

Enter the name of your deployment html page such as
“publish.htm”

Deployment From Web Only

Our next example demonstrates how to deploy an
application from a website.

The application can only be run from the website. The
application is not installed on the local machine.

Deployment Steps

Right-click the project from Solution Explorer window. Select
Properties. The Properties page is displayed.

Enter the deployment directory. In our example, we use directory
“N:\www\lectures\t11\Publish3”.

Enter the deployment website url, eg:

http://www.it.murdoch.edu.au/units/ICT365/Test/MyListbox

Click “The application is available online only”.

You can enter product name such as “My Listbox” and company
name such as “ICT365” from Option menu.

Enter the name of the deployment web page, such as “run.htm”.

Click “Publish Now”. The application package will be created in the
deployment directory “N:\www\lectures\t11\Publish3\”.

Copy all files from the deployment directory to the deployment
website.

This link is not active

http://www.it.murdoch.edu.au/units/ICT365/Test/MyListbox

Run Application

To run the application, enter the following url in a
web browser:

http://www.it.murdoch.edu.au/units/ICT365/Test/MyList
box/run.htm

Then click “Run” button in the web page to launch
the application.

The application will be retrieved from the website to
the local machine to run.

http://www.it.murdoch.edu.au/units/ICT239/Test/MyListbox/run.htm

Limitations of ClickOnce

ClickOnce application does not use Registry. The
application is installed in a completely separate
place under the logon user’s profile. It does not
share files with other application.

It is good for thin client applications. For applications
that need to share libraries, it may be better to use
Microsoft Installer to create application package.

Summary

IL/MSIL/CIL - IL code is a CPU independent partially compiled code. It’s partially compiledbecause
we do not know in what kind of environment .NET code will run and on runtime IL Code will
compile to machine code using the environmental properties (CPU, OS, machine configuration,
etc).

ILDASM - This is a tool provided by Visual Studio to view IL code. To run ILDASM, we have to select
option “Visual Studio Command Prompt” from “Visual Studio Tools” and type ildasm. It will open
the ildasm tool where we can open any exe/dll.ildasm tool read the assembly by reflection and it
is showing us various properties, methods which our assembly has. Here, we can see IL code of
any method/property by clicking on that.

CLR - CLR is the heart of the .NET framework and it does 4 primary important things:

Garbage collection

CAS (Code Access Security)

CV (Code Verification)

IL to Native translation

CTS - CTS ensures that data types defined in two different languages get compiled to a common data
type. This is useful because there may be situations when we want code in one language to be
called in other language.

We can see a practical demonstration of CTS by creating the same application in C# and VB.NETand
then compare the IL code of both applications. Here, the datatype of both IL code is same.

CLS - CLS is a subset of CTS. CLS is a set of rules or guidelines. When any programming language
adheres to these set of rules, it can be consumed by any .NET language.CTS.

JIT - JIT compiles the IL code to Machine code just before execution and then saves this transaction
in memory. 99

REFERENCES:
Assemblies, deployment

92

Reading/ reference
http://prospero.murdoch.edu.au/record=b2962782~S1

Chapter 16. Packaging and
Deploying Your Code Cross-
Platform

http://prospero.murdoch.edu.au/record%3Db2962782%7ES1

Reading/ reference
http://prospero.murdoch.edu.au/record=b2962780~S1

Chapter: Understanding CIL and the
Role of Dynamic Assemblies

http://prospero.murdoch.edu.au/record%3Db2962780%7ES1

Reading/ reference

Chapter Assembly Loading
and Reflection

REFERENCES:
CLR, CIL

96

Reading/ reference
http://prospero.murdoch.edu.au/record=b2962780~S1

Chapter: Understanding Object
Lifetime

Chapter: Building and Configuring
Class Libraries

Chapter: Type Reflection, Late
Binding, and Attribute-Based
Programming

Chapter: Dynamic Types and the
Dynamic Language Runtime

Chapter: Processes, AppDomains,
and Object Contexts

http://prospero.murdoch.edu.au/record%3Db2962780%7ES1

Reading/ reference

Chapter 1. The CLR’s Execution
Model

Chapter 2. Building, Packaging,
Deploying, and Administering
Applications and Types

Chapter 3. Shared Assemblies and
Strongly Named Assemblies

Chapter 21. The Managed Heap
and Garbage Collection

Chapter CLR Hosting and
AppDomains

